

These tables are from

## Understanding the properties of matter

by Michael de Podesta.

The copyright of these tables resides with the publishers, *Taylor and Francis*.

The tables may be used freely for educational purposes, but their source must be acknowledged.

For more details see www.physicsofmatter.com

Table 10.1 Summary of the contributions to the Gibbs free energy in each of the possible states of matter.

|        | U                                                                                                                                                                                                     | - <i>TS</i>                                                                                                                                                                                                                                                                                                                                                | +PV                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Solid  | In a solid atoms are close to-<br>gether and interact strongly.<br>This terms is therefore large<br>and negative.                                                                                     | The entropy of a solid is very<br>low. This is because solids are<br>highly ordered, which is <i>a priori</i> a<br>very unlikely state for matter to<br>be in. However, the entropy is<br>multiplied by temperature. If the<br>temperature is low, <i>TS</i> will be<br>small, but if the temperature is<br>large this term will be very sig-<br>nificant. | At a given pressure the volume<br>of a solid is close to the mini-<br>mum volume that a substance<br>can occupy. This makes this<br>term small. |
| Gas    | The interaction between atoms<br>is many orders of magnitude<br>weaker in gases than in solids.<br>In the Ideal Gas theory it is ne-<br>glected entirely.                                             | The entropy of a gas is very high.<br>This is because gases are com-<br>pletely disordered collections of<br>atoms.                                                                                                                                                                                                                                        | At a given pressure the volume<br>of a gas is as large as it is able<br>to be.                                                                  |
| Liquid | The interaction between atoms<br>is of the same order as in the<br>solid state, but the lack of or-<br>ganisation means that the in-<br>ternal energy is generally not<br>quite as low as in a solid. | The entropy of a liquid is a little larger than a solid.                                                                                                                                                                                                                                                                                                   | At a given pressure the volume<br>of a liquid is similar to that of a<br>solid.                                                                 |

| Table  | <b>10.2</b> Summary of the contributions to the Gibbs free energy $G = U - TS + PV$ in the solid and gas |
|--------|----------------------------------------------------------------------------------------------------------|
| phases | The results of the sum are plotted as a function of temperature in Figure 10.1.                          |

|       | U                                                                                                                                                                                                                                                                              | TS                                                                                                                                                                                                                                                                                                                                 | PV                                                                                                                                                                                                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (mol <sup>-1</sup> )                                                                                                                                                                                                                                                           | (mol <sup>-1</sup> )                                                                                                                                                                                                                                                                                                               | (mol <sup>-1</sup> )                                                                                                                                                                                                                     |
| Solid | The cohesive binding energy is<br>given by Table 11.5 as $-90.1$<br>kJ mol <sup>-1</sup> . To estimate <i>U</i> we evalu-<br>ate:<br>$-90.1 \times 10^3 + \int C_V(T) dT$<br>where $C_V(T)$ is estimated from a<br>Debye model of a solid with a<br>Debye temperature of 100 K | Estimated from:<br>$T\left[\int \frac{C_V(T)}{T} dT\right]$ with $C_V(T)$ estimated from a De-<br>bye model of a solid with a Debye<br>temperature of 100 K.<br>The entropy at $T = 0$ K is taken as                                                                                                                               | We neglect thermal expansion and<br>estimate <i>PV</i> from the density and<br>atomic mass (Table 7.2).<br>At atmospheric pressure we find:<br>$PV = 1.013 \times 10^5 \times \frac{39 \times 10^{-3}}{830}$<br>This term is very small. |
|       |                                                                                                                                                                                                                                                                                | zero.                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          |
| Gas   | Assuming perfect gas behaviour,<br>we have no binding energy and so<br>we estimate U as:<br>$0 + \int C_V(T) dT$<br>where $C_V(T)$ is estimated from an<br>assumption of perfect gas behav-<br>iour as $C_V = 1.5R$ independent of<br>temperature.                             | Estimated from:<br>$T\left[\int \frac{C_V(T)}{T} dT\right]$ with $C_V(T)$ estimated from an<br>assumption of perfect gas be-<br>haviour as $C_V = 1.5R$ independent<br>of temperature.<br>The entropy at T = 0 K is chosen<br>so as make the entropy of potas-<br>sium vapour at 298 K agree with<br>the data from <i>Emsley</i> . | We use the perfect gas equation<br>for 1 mole of substance to evalu-<br>ate :<br>PV = RT                                                                                                                                                 |

**Table 10.3** Summary of the contributions to the Gibbs free energy G = U - TS + PV in the liquid phase. The results are plotted as a function of temperature along with the results from Table 10.1 in Figure 10.2.

|        | U                                                                                                                    | TS                                                                                                                   | PV                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|        | (mol <sup>-1</sup> )                                                                                                 | (mol <sup>-1</sup> )                                                                                                 | (mol <sup>-1</sup> )                               |
| Liquid | The cohesive binding energy of the solid is given by <i>Kittel</i> as $-90.1 \text{ kJ mol}^{-1}$ . Assuming a value | Estimated from:<br>$T\left[\int \frac{C_{P}(T)}{T} dT\right]$                                                        | We consider this term to be the same as the solid. |
|        | of around 90% of this figure we estimate $U$ as:<br>-81×10 <sup>3</sup> + $\int C_V(T) dT$                           | where $C_v(T)$ is estimated to be<br>10% greater than the equivalent<br>solid and to have a lower Debye              |                                                    |
|        | where $C_{v}(T)$ is estimated to be 10% greater than the equivalent solid and to have a lower Debye temperature.     | The entropy at $T = 0$ is set equal to zero as for a solid. This will underestimate the entropy of the liquid state. |                                                    |

## Table 10.4 The orders of some phase transitions.

| First-order           | Continuous               |
|-----------------------|--------------------------|
| Melting/freezing      | Superconducting          |
|                       | (in zero magnetic field) |
| Boiling/condensing    | Ferromagnetic            |
| Liquid crystals       |                          |
| Superconducting       |                          |
| (in a magnetic field) |                          |